当前位置

网站首页> 初中 > 初二 > 数学 > 浏览文章

必备的初二上册数学期中考试知识点:一次函数的应用

作者:小梦 来源: 网络 时间: 2024-08-06 阅读:

成绩的提高是同学们提高总体学习成绩的重要途径,大家一定要在平时的练习中不断积累,小编为大家准备了必备的初二上册数学期中考试知识点:一次函数的应用,希望同学们不断取得进步!

一次函数的应用

一、分段函数问题

分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际。

二、函数的多变量问题

解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数

三、概括整合

(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。

(2)理清题意是采用分段函数解决问题的关键。

常用公式

1.求函数图像的k值:(y1-y2)/(x1-x2)

2.求与x轴平行线段的中点:(x1+x2)/2

3.求与y轴平行线段的中点:(y1+y2)/2

4.求任意线段的长:√[(x1-x2)^2+(y1-y2)^2 ]

5.求两个一次函数式图像交点坐标:解两函数式

两个一次函数 y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标

6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]

7.求任意2点的连线的一次函数解析式:(X-x1)/(x1-x2)=(Y-y1)/(y1-y2) (若分母为0,则分子为0)

x y

+, +(正,正)在第一象限

- ,+ (负,正)在第二象限

- ,- (负,负)在第三象限

+ ,- (正,负)在第四象限

8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2

9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1

10.y=k(x-n)+b就是直线向右平移n个单位

y=k(x+n)+b就是直线向左平移n个单位

一次函数的平移

口诀:右减左加(对于y=kx+b来说,只改变n)

y=kx+b+n就是向上平移n个单位

y=kx+b-n就是向下平移n个单位

口诀:上加下减(对于y=kx+b来说,只改变b)

11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

生活中的应用

1.当时间t一定,距离s是速度v的一次函数。s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。

3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

函数问题

例1 已知正比例函数 ,则当k——0时,y随x的增大而减小。

解:根据正比例函数的定义和性质,得 k<0。

例2. 已知点P1(x1,y1)、P2(x2,y2)是一次函数y=3x+4的图象上的两个点,且y1>y2,则x1与x2的大小关系是( )

A. x1>x2 B. x1

解:根据题意,知k=3>0,且y1>y2。根据一次函数的性质“当k>0时,y随x的增大而增大”,得x1>x2。

故选A。

例3. 一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( )

A. 第一象限 B. 第二象限

C. 第三象限 D. 第四象限

解:由kb>0,知k、b同号。因为y随x的增大而减小,所以k<0,从而b<0。

故一次函数y=kx+b的图象经过第二、三、四象限,不经过第一象限。故选A .

以上就是常梦网为大家整理的必备的初二上册数学期中考试知识点:一次函数的应用,怎么样,大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利!

相关标签搜索:初二期中复习

2015初二上册数学期中考试知识点总结:线段垂直平分线  

全等三角形期中考试知识点:精选八年级上册数学

网友最爱