2014-2015初三数学下册第四单元试题:单元练习题
我们经常听见这样的问题:你的数学怎么那么好啊?教教我诀窍吧?其实学习这门课没有什么窍门。只要你多练习总会有收获的,希望下文的这篇2014-2015初三数学下册第四单元试题,能够帮助到您!
一、选择题(共10小题,每小题4分,满分40分. 每小题只有一个正确选项,请在答题卡的相应位置填涂)
1. 的相反数是 ( ▲ )
A.- B. )-1
C.- 3 D.3
2. 下列运算正确的是 ( ▲ )
A.4a-3a=1 B.(ab2)2=a2b2
C.3a6÷a3=3a2 D.a•a2=a3
3.在数轴上表示不等式组 ( ▲ )
B. C. D.
4.下列图形中,是中心对称图形,但不是轴对称图形的是( ▲ )
A. B. C. D.
5.如图,已知直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α等于( ▲ )
A.21° B.30°
C.58° D.48°
6. 化简 的结果( ▲ )
A. x- y B.y- x
C.x+y D.- x- y
7. 如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于
点C,若∠A=350,则∠D等于( ▲ )
20 B. 35
C. 45 D. 50
8.某学习小组对甲、乙、丙、丁四个市场三月份每天的青菜价格进行调查,计算后发现这个月四个市场青菜的价格平均值相同,方差分别为 ,,那么三月份青菜价格最稳定的市场是( ▲ )
A.甲 B.乙 C.丙 D.丁
9.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(-3,2),
若反比例函数y= (x>0)的图象经过点A,则k的值为( ▲ )
A.-6 B.-3
C.3 D.6
10.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:
①∠BOC=90°+ ∠A;②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;③EF是△ABC的中位线;④设OD=m,AE+AF=n,则S△AEF= mn.其中正确的结论是( ▲ )
A. ①②③ B. ①③④ C. ②③④ D ①②④.
二、填空题(共6题,每小题4分,满分24分. 请将答案填入答题卡的相应位置)
11. = ▲
12.最簿 的金箔的厚度为0.000000091m,用科学记数法可表示为 ▲
13. 如图,△ACB≌△A′CB′,∠BCB′=30°,
则∠ACA′的度数为 ▲
14. 小华在解一元二次方程x2-x=0时,只得出一个根x=1,则被漏掉
的一个根是 ▲
15. 现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三
根那么可以组成的三角形的概率是 ▲
16.如图是由圆心角为30°,半径分别是1、3、5、7、…的
扇形组成的图形,阴影部分的面积依次记为S1、S2、
S3、…,则S14= ▲ (结果保留π).
三、解答题(共7小题,计86分.请将解答过程写在答题卡的相应位置,作图或添辅助线用铅笔画完,需用水笔再描黑)
17. (每小题7分,满分14分)
(1)计算:2−2+|− |−(π−2014)0;
(2)先化简,再求值: ,
其中
18.(满分16分)
(1)解方程: (8分)
(2)如图是4×4正方形网格,每个小正方形的边长为l,
请在网格中确定 外接圆的圆心P的位置,那么 所对的圆心角度是 ▲ (8分)
19. (本题满分10分)
某课题小组为了解某品牌电动自行车的销售情况,对某专卖店第一季度该品牌A、B、C、D四种型号电动自行车的销量做了统计,绘制成如下两幅统计图(均不完整).
(1)该店第一季度售出这种品牌的电动自行车共有多少辆?(4分)
(2)将C型号部分的条形统计图补充完整;(3分)
(3)若该专卖店计划订购这四款型号的电动自行车2400辆,求C型号电动自行车应订购多少辆?(3分)
20.(本题满分10分)
如图,某段河流的两岸PQ、MN互相平行,河岸PQ上有一排小树,已知相邻
两树之间的距离CD=50米,某人在河岸MN的A处测得∠DAN=35°,然后沿
河岸走了120米到达B处,测得 ∠CBN=70°.求此段河流的宽度CE(结果
保留两个有效数字).
(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,
sin70°≈0.94,cos70°≈0.34,
tan70°≈2.75)
21. (本题满分10分)
某企业职工的工资待遇是:底薪1000元,每月工作22天,每天工作8小时,按件计酬,多劳多得. 已知该企业工人制作A、B两种产品,可以得到报酬分别是2.50元╱件和4.0元╱件,而且工人可选择A、B两种产品中的一种或两种进行生产.小李在这家企业工作,他生产1件A产品和1件B产品需40分钟,生产3件A产品和2件B产品需1小时36分钟.
(1)小李生产1件A产品、1件B产品各需要多少分钟.(6 分)
(2)小李在这家企业工作每月的工资收入范围.(4分)
22.(本题满分12分)
如图,已知抛物线经过原点O和x轴上另一点A(4,0), 抛物线的对称轴与x轴交于C点,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、抛物线的对称轴分别交于点D、E.
(1)求B点坐标及抛物线的解析式;(4 分)
(2)求证:①CB=CE;②点D是 线段BE的中点;(4 分)
(3)在该抛物线上是否存在这样的点P,满足PB=PE,若存在,请写出所有符合条件的点P的坐标;若不存在,请说明理由. (4 分)
23. (本题满分14分)
如图,等边∆ABC中,D、F分别是边BC、AB上的点,且CD=BF,以AD为边向左作等边∆ADE,连接CF、EF,设BD:DC=K.
(1)求证:△ACD≌△CBF;(4分)
(2)判断四边形CDEF是怎样的特殊四边形,并说明理由;(6分)
(3)当∠DEF=45°时,求K的值. (4分)
参考答案
说明:1.提供的答案除选择题外,不一定是唯一答案,对于与此不同的答案,只要是
正确的,同样给分.
2.评分说明只是按照一种思路与方法给出作为参考.在阅卷过程中会出现各种
不同情况,可参照评分说明,定出具体处理办法,并相应给分.
一、选择题:(每小题只有一个正确答案,每小题4分,共40分)
1.A; 2.D; 3.A; 4.C; 5.D; 6 .C;7. A;8. B;9.C;10.D;
二、填空题:(每小题4分,共24分)
11.2; 12.9.1 ; 13.30 ; 14.x=0; 15. ; 16.18
三、解答题 :(本大题应按题目要求写出演算步骤或解答过程。)
17. 解:(1)原式= …………7分
(2)原式=x2-2x+1-x2+2xy …………4分
=2xy-2x …………5分
当 …………6分
原式=0…………7分
18. 解:(1)去分母:1=-(1-x)+x-2 …………3分
解得:x=2…………6分
经检验:x=2是增根,所以原方程无解. …………8分
(2)图略…………4分
所对的圆心角度数是90 …………8分
19.解:(1)该店第一季度售出这种品牌的电动自行车共有600辆…………4分
(2) C型号有180辆,图略…………3分
(3)720辆…………3分
20.解:过点C作CF∥AD,交MN于点F, ∴∠CFB=∠A=35 …………2分
∵ PQ∥MN, ∴四边形AFCD是平行四边形,∴AF=DC=50(m)
∴BF120-50=70(m)…………5分
∵ ∠CBE=70 , ∴∠CFB=∠FCB=35 , ∴BF=BC=70(m), …………7分
在Rt△CBE中 =Sin70 ,………8分 BC=0.94 ≈66(m)………10分
21.解:设小李生产1件A产品、1件B产品各需要x、y分钟. …………1分
(1)根据题图意得: …………4分
解得: …………6分 答略
(2)解法一.由(1)可知:
小李选择生产A产品的报酬为: ;…………1分
选择生产B产品的报酬为: ;…………2分
∴小李在这 家企业工作每月的工资收入范围是:2650 2760…………4分
解法二.设小李在这家企业工作每月的工资收入为W,小李生产A产品t天,生产B产品(22-t)天,
W=1000+2.5 +4.0 =2760-5t
∵ , ∴ 2760
22.(1)∵ 点B(-2,m)在直线y=-2x-1上,
∴m=-2×(-2)-1=3. ∴ B(-2,3) ………………………………2分
∵ 抛物线经过原点O和点A, ∴ 点A的坐标为(4,0) . …………3分
设所求的抛物线对应函数关系式为y=a(x-0)(x-4). …………4分
将点B(-2,3)代入上式,得3=a(-2-0)(-2-4),
∴ .…………5分
∴ 所求的抛物线对应的函数关系式为 ,
即 . …………6分(或设所求的抛物线对应函
数关系式为y=ax2+b,用联立方程组求解a、b)
(2)①∵直线y=-2x-1与y轴、称轴x=2交点坐标
分别为D(0,-1)、 E(2,-5).
过点B作BG∥x轴,与y轴交于F、对称轴为x=2交于G,
则BG⊥直线x=2,
∴F(0,3) G(2,3), BG=4. …………………1分
在Rt△BGC中,BC= .
∵ CE=5,∴ CB=CE=5. ……………………2分
②过点E作EH∥x轴,交y轴于H,∴∠EBF=∠BEH, ∠BDF=∠HDE
∵直线y=-2x-1对称轴为x=2交于E.∴E(2,3),
∴HE=FB=2
∴ △DFB≌△DHE (SAS),
∴ BD=DE. 即D是BE的中点. ………………………4分
(3) 存在.
由(2)知:直线DC是线段BE的垂直平分线,∵PB=PE,∴ 点P在直线CD上,
∴ 符合条件的点P是直线CD与该抛物线的交点.
设直线CD对应的函数关系式为y=kx+b. …………………………1分
将D(0,-1) C(2,0)代入,得 .
解得 .
∴ 直线CD对应的函数关系式为y= x-1. ………………………2分
∵ 动点P的坐标为(x, ),
∴ x-1= .
解得 , .
∴ , .
∴ 符合条件的点P的坐标为 ( , )或( , )……………4分
(注:用其它方法求解参照以上标准给分.)
23.(1)证:∵∆ABC是等边,∴AC=CB, ∠ACB=∠B=600…………2分
又∵CD=BF,∴△ACD≌△CBF………………4分
(2)由(1)得△ACD≌△CBF,∴∠CAD=∠BCF,AD=CF……1分
又∵∆ADE是等边,∴ED=AD=CF, ∠EDA=60 …………3分
∵∠BDA=∠BDE+∠EDA=∠CAD+60 ,
∴∠BDE=∠CAD=∠BCF………………4分
∴ED∥CF, ∴四边形CDEF是平行四边形………………6分
(3)过D点作DH⊥AC垂足为H ………………1分
∵BD:DC=K,∴设BD=nK,DC=n
∵∠ACB=60 , ∴ ∠HDC=30 ,
∴CH= ,DH= …………2分
∵四边形CDEF是平行四边形,
∴∠DEF=∠DCF=∠CAD=45°
∴∠ADH=∠HAD=45°, ∴AH=DH= n………………3分
∴nk+n = , ∴k= ………………4分
这篇2014-2015初三数学下册第四单元试题就为大家分享到这里了。希望对大家有所帮助!
2015初中三年级数学期末必备试卷
初三年级下册数学试题及答案:第四单元测试题