当前位置

网站首页> 初中 > 初一 > 数学 > 浏览文章

2015年七年级上册数学期中考试卷(含答案和解释)

作者:小梦 来源: 网络 时间: 2024-04-12 阅读:

为了更好的迎接考试,在考试中取得好的成绩,编辑老师为同学们整理了七年级上册数学期中考试卷,具体内容请看下文。

一.选择题(每小题3分,共24分)

1.如果水库的水位高于正常水位1m时,记作+1m,那么低于正常水位2m时,应记作(  )

A. +2m B. ﹣2m C. + m D. ﹣ m

2.﹣3的绝对值是(  )

A. 3 B. ﹣3 C. ﹣  D.

3.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为(  )

A. 5 B. 6 C. 7 D. 8

4.下列各式中不是单项式的是(  )

A.   B. ﹣  C. 0 D.

5.在﹣(﹣4),|﹣1|,﹣|0|,(﹣2)3这四个数中非负数共有(  )个.

A. 1 B. 4 C. 2 D. 3

6.下列说法正确的是(  )

A. x+y是一次单项式

B. 多项式3πa3+4a2﹣8的次数是4

C. x的系数和次数都是1

D. 单项式4×104x2的系数是4

7.下列各组中的两项是同类项的是(  )

A. 6zy2和﹣2y2z B. ﹣m2n和mn2 C. ﹣x2和3x D. 0.5a和0.5b

8.两个有理数相除,其商是负数,则这两个有理数(  )

A. 都是负数 B. 都是正数

C. 一个正数一个负数 D. 有一个是零


二、填空题(每小题3分,共21分)

9.在﹣3,﹣1,0,2这四个数中,最小的数是      .

10.列式表示:p与2的差的 是      .

11.在数轴上表示点A的数是3,则与点A相距4个单位长度的点表示的数是      .

12.在近似数6.48中,精确到      位,有      个有效数字.

13.多项式4x2y﹣5x3y2+7xy3﹣ 是      次      项式.

14. 的相反数是      ,倒数是      ,绝对值是      .

15.若4x4yn+1与﹣5xmy2是同类项,则m+n=      .


三、计算题(16题6分,17题24分,共30分)

16.画出数轴,在数轴上表示下列各数,并用“<”连接:+5,﹣3.5, , ,4,0,2.5.

17.计算

(1)﹣6+14﹣5+22

(2)( ﹣ + )×(﹣12)

(3)23×(﹣5)﹣(﹣3)÷

(4)(﹣2)2+3×(﹣2)﹣1÷(﹣ )2

(5)8a﹣a3+a2+4a3﹣a2﹣7a﹣6

(6)(﹣3)×(﹣4)﹣60÷(﹣12)

四、解答题(18、19、20题各6分,21题7分共25分)

18.(1)用代数式表示图中阴影部分的面积S.

(2)请你求出当a=2,b=5,h=4时,S的值.

19.若m、n互为相反数,p、q互为倒数,且|a|=3,求 值.

20.若|m﹣2|+|n﹣5|=0,求(m﹣n)2的值.

21.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发,到收工时,行走记录为(单位:千米):+8,﹣9,+4,+7,﹣2,﹣10,+18,﹣3,+7,+5.

回答下列问题:

(1)收工时在A地的哪边距A地多少千米?

(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?

参考答案与试题解析

一.选择题(每小题3分,共24分)

1.如果水库的水位高于正常水位1m时,记作+1m,那么低于正常水位2m时,应记作(  )

A. +2m B. ﹣2m C. + m D. ﹣ m

考点: 正数和负数.

分析: 在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.

解答: 解:如果水库的水位高于正常水位1m时,记作+1m,那么低于正常水位2m时,应记作﹣2m.

故选:B.

点评: 此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.

2.﹣3的绝对值是(  )

A. 3 B. ﹣3 C. ﹣  D.

考点: 绝对值.

分析: 计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.

解答: 解:﹣3的绝对值是3.

故选:A.

点评: 此题主要考查了绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.

3.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为(  )

A. 5 B. 6 C. 7 D. 8

考点: 科学记数法—表示较大的数.

分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.

解答: 解:将6700000用科学记数法表示为6.7×106,

故n=6.

故选B.

点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

4.下列各式中不是单项式的是(  )

A.   B. ﹣  C. 0 D.

考点: 单项式.

分析: 数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.

解答: 解:A、是数与字母的积的形式,是单项式;

B、C都是数字,是单项式;

D、分母中有字母,是分式,不是单项式.

故选D.

点评: 本题考查单项式的定义,较为简单,要准确掌握定义.

5.在﹣(﹣4),|﹣1|,﹣|0|,(﹣2)3这四个数中非负数共有(  )个.

A. 1 B. 4 C. 2 D. 3

考点: 有理数.

分析: 利用绝对值、相反数及有理数的乘方,先对所给数进行化简,即可得出结论.

解答: 解:﹣(﹣4)=4,|﹣1|=1,﹣|0|=0,(﹣2)3=﹣8,

所以只有(﹣2)3是负数,所以非负数的个数为3,故答案为D.

点评: 此题主要考查相反数、绝对值及有理数的乘方的运算,解题的关键是把题目所给数据进行准确化简,比较好容易.

6.下列说法正确的是(  )

A. x+y是一次单项式

B. 多项式3πa3+4a2﹣8的次数是4

C. x的系数和次数都是1

D. 单项式4×104x2的系数是4

考点: 单项式;多项式.

分析: 分别根据单项式与多项式的定义对各选项进行逐一分析即可.

解答: 解:A、x+y是一次多项式,故本选项错误;

B、多项式3πa3+4a2﹣8的次数是3,故本选项错误;

C、x的系数和次数都是1,故本选项正确;

D、单项式4×104x2的系数是4×104,故本选项错误.

故选C.

点评: 本题考查的是单项式的定义,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题的关键.

7.下列各组中的两项是同类项的是(  )

A. 6zy2和﹣2y2z B. ﹣m2n和mn2 C. ﹣x2和3x D. 0.5a和0.5b

考点: 同类项.

分析: 根据同类项的定义,结合选项求解.

解答: 解:A、6zy2和﹣2y2z中,相同字母的指数相同,是同类项,故本选项正确;

B、﹣m2n和mn2中,字母相同,指数不同,故本选项错误;

C、﹣x2和3x,字母相同,指数不同,故本选项错误;

D、0.5a和0.5b字母不同,故本选项错误.

故选A.

点评: 本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.

8.两个有理数相除,其商是负数,则这两个有理数(  )

A. 都是负数 B. 都是正数

C. 一个正数一个负数 D. 有一个是零

考点: 有理数的除法.

分析: 根据两数相除,同号得正,异号得负,进行分析.

解答: 解:根据除法法则,知两个有理数相除,其商是负数,则这两个有理数必定异号.

故选C.

点评: 此题考查了有理数的除法法则.

二、填空题(每小题3分,共21分)

9.在﹣3,﹣1,0,2这四个数中,最小的数是 ﹣3 .

考点: 有理数大小比较.

分析: 根据负数小于0和正数,得到最小的数在﹣3和﹣1中,然后比较它们的绝对值即可得到答案.

解答: 解:∵|﹣1|=2,|﹣3|=3,

∴﹣3<﹣1,

且负数小于0和正数,

所以四个数中最小的数为﹣3.

故填:﹣3.

点评: 本题考查了有理数的大小比较:负数小于0和正数,0小于正数;负数的绝对值越大,这个数越小.

10.列式表示:p与2的差的 是  (p﹣2) .

考点: 列代数式.

分析: 用p与2的差乘以 即可.

解答: 解:根据题意得:

(p﹣2);

故答案为: (p﹣2).

点评: 本题考查了列代数式,主要是文字语言转化为数学语言的能力的训练.

11.在数轴上表示点A的数是3,则与点A相距4个单位长度的点表示的数是 ﹣1或7 .

考点: 数轴.

分析: 根据题意得出两种情况:当点在表示3的点的左边时,当点在表示3的点的右边时,列出算式求出即可.

解答: 解:分为两种情况:

①当点在表示3的点的左边时,数为3﹣4=﹣1;

②当点在表示3的点的右边时,数为3+4=7;

故答案为:﹣1或7.

点评: 本题考查了数轴的应用,注意符合条件的有两种情况.

12.在近似数6.48中,精确到 百分 位,有 3 个有效数字.

考点: 近似数和有效数字.

分析: 近似数精确到哪一位,应当看末位数字实际在哪一位,最后一位是什么位就是精确到哪一位;一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.

解答: 解:近似数6.48中,最后一位是百分位,因而是精确到百分位,有6,4,8共3个有效数字.

故答案是百分和3.

点评: 本题主要考查了近似数与有效数字的确定方法,精确到哪一位,即对下一位的数字进行四舍五入.有效数字的计算方法以及与精确到哪一位是需要识记的内容,经常会出错.

13.多项式4x2y﹣5x3y2+7xy3﹣ 是 五 次 四 项式.

考点: 多项式.

分析: 多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.

解答: 解:多项式4x2y﹣5x3y2+7xy3﹣ 是 五次四项式,

故答案为:五,四.

点评: 此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.

14. 的相反数是   ,倒数是 ﹣2 ,绝对值是   .

考点: 倒数;相反数;绝对值.

专题: 计算题.

分析: 根据相反数的性质,互为相反数的两个数和为0,倒数的性质,互为倒数的两个数积为1,绝对值的定义,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,求解即可.

解答: 解:根据倒数、相反数和绝对值的定义得:

﹣ 的相反数为:

﹣ 的倒数为:1÷(﹣ )=﹣2,

﹣ 的绝对值为: ,

故答案为: ,﹣2, .

点评: 本题主要考查了绝对值、相反数、倒数的定义,a的相反数是﹣a,a的倒数是  ,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,难度适中.

15.若4x4yn+1与﹣5xmy2是同类项,则m+n= 5 .

考点: 同类项.

分析: 这类题目的解题关键是从同类项的定义出发,列出方程并求解.

解答: 解:由同类项的定义可得m=4,n+1=2,解得n=1.

点评: 同类项定义中的两个“相同”:

(1)所含字母相同;

(2)相同字母的指数相同,是易混点,因此成了中考的常考点.

三、计算题(16题6分,17题24分,共30分)

16.画出数轴,在数轴上表示下列各数,并用“<”连接:+5,﹣3.5, , ,4,0,2.5.

考点: 有理数大小比较;数轴.

分析: 先把各点在数轴上表示出来,再从左到右用“<”把各点连接起来即可.

解答: 解:如图所示:

故﹣3.5< <0< <2.5<4<+5.

点评: 本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的数大的特点是解答此题的关键.

17.计算

(1)﹣6+14﹣5+22

(2)( ﹣ + )×(﹣12)

(3)23×(﹣5)﹣(﹣3)÷

(4)(﹣2)2+3×(﹣2)﹣1÷(﹣ )2

(5)8a﹣a3+a2+4a3﹣a2﹣7a﹣6

(6)(﹣3)×(﹣4)﹣60÷(﹣12)

考点: 有理数的混合运算;合并同类项.

专题: 计算题.

分析: (1)原式结合后,相加即可得到结果;

(2)原式利用乘法分配律计算即可得到结果;

(3)原式先计算乘除运算,再计算加减运算即可得到结果;

(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;

(5)原式合并同类项即可得到结果;

(6)原式先计算乘除运算,再计算加减运算即可得到结果.

解答: 解:(1)原式=﹣11+36=25;

(2)原式=﹣5+4﹣9=﹣10;

(3)原式=﹣115+128=13;

(4)原式=4﹣6﹣16=﹣18;

(5)原式=3a3+a﹣6;

(6)原式=12+5=17.

点评: 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.

为大家推荐的七年级上册数学期中考试卷的内容,还满意吗?相信大家都会仔细阅读,加油哦!

初一上册语文期中试题练习(附答案新人教版) 

初一语文上册期中试题(新人教附答案) 

热点阅读

网友最爱