2014年高中第四册数学期末考试题练习
2014年高中第四册数学期末考试题练习
常梦网高中频道的编辑就为您准备了2014年高中第四册数学期末考试题练习
一、选择题:本大题共8个小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 若复数z=(1+ai)·(2+i)是纯虚数,则实数a的值为
A.2 B.- C. D.-2
2.如图所示是数列一章的知识结构图,下列说法正确的是
A.“概念”与“分类”是从属关系
B.“等差数列”与“等比数列”是从属关系
C.“数列”与“等差数列”是从属关系
D.“数列”与“等比数列”是从属关系,但“数列”与“分类”不是从属关系
3.下列说法中错误的是
A.对于命题p:x0∈R,sin x0>1,则綈p:x∈R,sin x≤1;
B.命题“若0
C.若p∨q为真命题,则p,q均为真命题;
D.命题“若x2-x-2=0,则x=2”的逆否命题是“若x≠2,则x2-x-2≠0”.
4.“1
A.充分不必要条件
B.必要不充分条件
C.既不充分也不必要条件
D.充要条件
5.某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如下几组样本数据:
x 3 4 5 6
y 2.5 3 4 4.5
据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为0.7,则这组样本数据的回归直线方程是
A.=0.7x+0.35 B.=0.7x+1
C.=0.7x+2.05 D.=0.7x+0.45
6.三角形的面积为S=(a+b+c)r,a、b、c为三角形的边长,r为三角形内切圆的半径,利用类比推理可以得出四面体的体积为
A.V=abc
B.V=Sh
C.V=(S1+S2+S3+S4)r,(S1、S2、S3、S4为四个面的面积,r为内切球的半径)
D.V=(ab+bc+ac)h,(h为四面体的高)
7.函数f(x)=x5-x4-4x3+7的极值点的个数是
A.1个 B.2个 C.3个 D.4个
8.已知椭圆+=1,F1、F2分别为其左、右焦点,椭圆上一点M到F1的距离是2,N是MF1的中点,则|ON|(O为原点)的长为
A.1 B.2 C.3 D.4
选择题答题卡
题号 1 2 3 4 5 6 7 8 得 分
答案
二、填空题:本大题共5个小题,每小题5分,共25分.请把答案填在答题卷对应题号后的横线上.
9.已知复数z=1+,则||=____________.
10.读下面的程序框图,当输入的值为-5时,输出的结果是________.
11.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:
则第n个图案中的白色地面砖有______________块.
12.曲线f(x)=xsin x在点处的切线方程是______________.
13.已知双曲线-=1(a,b>0)的顶点到渐近线的距离等于,则双曲线的离心率e是________.
三、解答题:本大题共3小题,共35分,解答应写出文字说明,证明过程或演算步骤.
14.(本小题满分11分)
在某测试中,卷面满分为100分,60分及以上为及格,为了调查午休对本次测试前两个月复习效果的影响,特对复习中进行午休和不进行午休的考生进行了测试成绩的统计,数据如下表所示:
分数段 [29~40) [40,50) [50,60) [60,70) [70,80) [80,90) [90,100]
午休考生
人数 23 47 30 21 14 31 14
不午休考
生人数 17 51 67 15 30 17 3
参考公式及数据:K2=
P(K2≥k0) 0.10 0.05 0.025 0.010 0.005
k0 2.706 3.841 5.024 6.635 7.879
(1)根据上述表格完成列联表:
及格人数 不及格人数 总计
午休
不午休
总计
(2)能否在犯错误的概率不超过0.025的前提下认为午休与考生及格有关系?对今后的复习有什么指导意义?
15.(本小题满分12分)
已知:a,b,c>0.求证:a(b2+c2)+b(a2+c2)+c(a2+b2)≥6abc.
16.(本小题满分12分)
已知抛物线y2=4x的焦点是F,准线是l,过焦点的直线与抛物线交于不同两点A,B,直线OA(O为原点)交准线l于点M,设A(x1,y1),B(x2,y2).
(1) 求证:y1y2是一个定值;
(2) 求证:直线MB平行于x轴.
必考Ⅱ部分
一、填空题:本大题共1个小题,每小题5分,共5分.请把答案填在答题卷对应题号后的横线上.
1.从抛物线x2=4y上一点P引抛物线准线的垂线,垂足为M,且|PM|=5,设抛物线的焦点为F,则△MPF的面积为________.
二、选择题:本大题共1个小题,每小题5分,满分5分.在每小题给出的四个选项中,只有一项是符合题目要求的.
2.已知定义在R上的函数f(x)的导数是f′(x),若f(x)是增函数且恒有f(x)>0,则下列各式中必成立的是
A.2f(-1)2f(-3)
C.2f(1)>f(2) D.3f(2)>2f(3)
三、解答题:本大题共3小题,共40分,解答应写出文字说明,证明过程或演算步骤.
3.(本小题满分13分)
已知函数f(x)=-x3+3x.
(1)求函数f(x)的单调区间和极值;
(2)当x∈[0,a],a>0时,设f(x)的最大值是h(a),求h(a)的表达式.
4.(本小题满分13分)
(1)证明:xln x≥x-1;
(2)讨论函数f(x)=ex-ax-1的零点个数.
5. (本小题满分14分)
如图,已知焦点在x轴上的椭圆+=1(b>0)有一个内含圆x2+y2=,该圆的垂直于x轴的切线交椭圆于点M,N,且⊥(O为原点).
(1)求b的值;
(2)设内含圆的任意切线l交椭圆于点A、B.
求证:⊥,并求|AB|的取值范围.
只要大家用心学习,认真复习,就有可能在高考的战场上考取自己理想的成绩。常梦网的编辑为大家带来的2014年高中第四册数学期末考试题练习,希望能为大家提供帮助。