当前位置

网站首页> 高中 > 高二 > 数学 > 浏览文章

高二数学必修四单元复习难点突破:三角函数图象与性质

作者:小梦 来源: 网络 时间: 2024-07-11 阅读:

在中国古代把数学叫算术,又称算学,最后才改为数学。本站小编准备了高二数学必修四单元复习难点突破,希望你喜欢。

一、周期函数

1、周期函数的定义:

对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数.T叫做这个函数的周期.

2、最小正周期:

如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.

1、求三角函数定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.

2、求解涉及三角函数的值域(最值)的题目一般常用以下方法:

(1)、利用sin x、cos x的值域;

(2)、形式复杂的函数应化为y=Asin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域(如本例以题试法(2));

(3)换元法:把sin x或cos x看作一个整体,可化为求函数在给定区间上的值域(最值)问题(如例1(2)).

二、正弦函数、余弦函数、正切函数的图象和性质

1、求三角函数的单调区间时,应先把函数式化成y=Asin(ωx+φ)(ω>0)的形式,再根据三角函数的单调区间,求出x所在的区间.应特别注意,考虑问题应在函数的定义域内.

2、周期性是函数的整体性质,要求对于函数整个定义域内的每一个x值都满足f(x+T)=f(x),其中T是不为零的常数.如果只有个别的x值满足f(x+T)=f(x),或找到哪怕只有一个x值不满足f(x+T)=f(x),都不能说T是函数f(x)的周期.

三角函数的奇偶性

1、三角函数的奇偶性的判断技巧

首先要对函数的解析式进行恒等变换,再根据定义、诱导公式去判断所求三角函数的奇偶性;也可以根据图象做判断.

2、求三角函数周期的方法

(1)、利用周期函数的定义;

(2)、利用公式:y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期为|ω|(2π),y=tan(ωx+φ)的最小正周期为|ω|(π);

(3)、利用图象.

高二数学必修四单元复习难点突破就为大家介绍到这里,希望对你有所帮助。

热点阅读

网友最爱