当前位置

网站首页> 高中 > 高三 > 数学 > 浏览文章

高三数学复习教案:高考数学圆锥曲线复习教案

作者:小梦 来源: 网络 时间: 2024-08-30 阅读:

欢迎来到常梦网高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。因此小编在此为您编辑了此文:“高三数学复习教案:高考数学圆锥曲线复习教案”希望能为您的提供到帮助。

本文题目:高三数学复习教案:高考数学圆锥曲线复习教案

1.已知直线L: 的右焦点F,且交椭圆C于A、B两点,点A、B在直线 上的射影依次为点D、E。

(1)若抛物线 的焦点为椭圆C的上顶点,求椭圆C的方程;

(2)(理)连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;否则说明理由。

(文)若 为x轴上一点,求证:

2.已知圆 定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足 ,点N的轨迹为曲线E。

(1)求曲线E的方程;

(2)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足 的取值范围。

3.设椭圆C: 的左焦点为F,上顶点为A,过点A作垂直于AF的直线交椭圆C于另外一点P,交x轴正半轴于点Q, 且

⑴求椭圆C的离心率;

⑵若过A、Q、F三点的圆恰好与直线

l: 相切,求椭圆C的方程.

4.设椭圆 的离心率为e=

(1)椭圆的左、右焦点分别为F1、F2、A是椭圆上的一点,且点A到此两焦点的距离之和为4,求椭圆的方程.

(2)求b为何值时,过圆x2+y2=t2上一点M(2, )处的切线交椭圆于Q1、Q2两点,而且OQ1⊥OQ2.

5.已知曲线 上任意一点P到两个定点F1(- ,0)和F2( ,0)的距离之和为4.

(1)求曲线 的方程;

(2)设过(0,-2)的直线 与曲线 交于C、D两点,且 为坐标原点),求直线 的方程.

6.已知椭圆 的左焦点为F,左、右顶点分别为A、C,上顶点为B.过F、B、C作⊙P,其中圆心P的坐标为(m,n).

(Ⅰ)当m+n>0时,求椭圆离心率的范围;

(Ⅱ)直线AB与⊙P能否相切?证明你的结论.

7.有如下结论:“圆 上一点 处的切线方程为 ”,类比也有结论:“椭圆 处的切线方程为 ”,过椭圆C: 的右准线l上任意一点M引椭圆C的两条切线,切点为 A、B.

(1)求证:直线AB恒过一定点;(2)当点M在的纵坐标为1时,求△ABM的面积

8.已知点P(4,4),圆C: 与椭圆E: 有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.

(Ⅰ)求m的值与椭圆E的方程;

(Ⅱ)设Q为椭圆E上的一个动点,求 的取值范围.

9.椭圆的对称中心在坐标原点,一个顶点为 ,右焦点 与点 的距离为 。

(1)求椭圆的方程;

(2)是否存在斜率 的直线 : ,使直线 与椭圆相交于不同的两点 满足 ,若存在,求直线 的倾斜角 ;若不存在,说明理由。

10.椭圆方程为 的一个顶点为 ,离心率 。

(1)求椭圆的方程;

(2)直线 : 与椭圆相交于不同的两点 满足 ,求 。

11.已知椭圆 的左焦点为F,左右顶点分别为A,C上顶点为B,过F,B,C三点作 ,其中圆心P的坐标为 .

(1) 若椭圆的离心率 ,求 的方程;

(2)若 的圆心在直线 上,求椭圆的方程.

12.已知直线 与曲线 交于不同的两点 , 为坐标原点.

(Ⅰ)若 ,求证:曲线 是一个圆;

(Ⅱ)若 ,当 且 时,求曲线 的离心率 的取值范围.

13.设椭圆 的左、右焦点分别为 、 ,A是椭圆C上的一点,且 ,坐标原点O到直线 的距离为 .

(1)求椭圆C的方程;

(2)设Q是椭圆C上的一点,过Q的直线l交x轴于点 ,较y轴于点M,若 ,求直线l的方程.

14.已知抛物线的顶点在原点,焦点在y轴的负半轴上,过其上一点 的切线方程为 为常数).

(I)求抛物线方程;

(II)斜率为 的直线PA与抛物线的另一交点为A,斜率为 的直线PB与抛物线的另一交点为B(A、B两点不同),且满足 ,求证线段PM的中点在y轴上;

(III)在(II)的条件下,当 时,若P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标的取值范围.

15.已知动点A、B分别在x轴、y轴上,且满足|AB|=2,点P在线段AB上,且

设点P的轨迹方程为c。

(1)求点P的轨迹方程C;

(2)若t=2,点M、N是C上关于原点对称的两个动点(M、N不在坐标轴上),点Q

坐标为 求△QMN的面积S的最大值。

16.设 上的两点,

已知 , ,若 且椭圆的离心率 短轴长为2, 为坐标原点.

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;

(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由

17.如图,F是椭圆 (a>b>0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为 .点C在x轴上,BC⊥BF,B,C,F三点确定的圆M恰好与直线l1: 相切.

(Ⅰ)求椭圆的方程:

(Ⅱ)过点A的直线l2与圆M交于PQ两点,且 ,求直线l2的方程.

18.如图,椭圆长轴端点为 , 为椭圆中心, 为椭圆的右焦点,且 .

(1)求椭圆的标准方程;

(2)记椭圆的上顶点为 ,直线 交椭圆于 两点,问:是否存在直线 ,使点 恰为 的垂心?若存在,求出直线 的方程;若不存在,请说明理由.

19.如图,已知椭圆的中心在原点,焦点在 轴上,离心率为 ,且经过点 . 直线 交椭圆于 两不同的点.

20.设 ,点 在 轴上,点 在 轴上,且

(1)当点 在 轴上运动时,求点 的轨迹 的方程;

(2)设 是曲线 上的点,且 成等差数列,当 的垂直平分线与 轴交于点 时,求 点坐标.

21.已知点 是平面上一动点,且满足

(1)求点 的轨迹 对应的方程;

(2)已知点 在曲线 上,过点 作曲线 的两条弦 和 ,且 ,判断:直线 是否过定点?试证明你的结论.

22.已知椭圆 的中心在坐标原点,焦点在坐标轴上,且经过 、 、 三点.

(1)求椭圆 的方程:

(2)若点D为椭圆 上不同于 、 的任意一点, ,当 内切圆的面积最大时。求内切圆圆心的坐标;

(3)若直线 与椭圆 交于 、 两点,证明直线 与直线 的交点在直线 上.

23.过直角坐标平面 中的抛物线 的焦点 作一条倾斜角为 的直线与抛物线相交于A,B两点。

(1)用 表示A,B之间的距离;

(2)证明: 的大小是与 无关的定值,

并求出这个值。

24.设 分别是椭圆C: 的左右焦点

欢迎来到常梦网高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。因此小编在此为您编辑了此文:“高三数学复习教案:高考数学函数复习教案”希望能为您的提供到帮助。

本文题目:高三数学复习教案:高考数学函数复习教案

【知识导读】

【方法点拨】

函数是中学数学中最重要,最基础的内容之一,是学习高等数学的基础.高中函数以具体的幂函数,指数函数,对数函数和三角函数的概念,性质和图像为主要研究对象,适当研究分段函数,含绝对值的函数和抽象函数;同时要对初中所学二次函数作深入理解.

1.活用“定义法”解题.定义是一切法则与性质的基础,是解题的基本出发点.利用定义,可直接判断所给的对应是否满足函数的条件,证明或判断函数的单调性和奇偶性等.

2.重视“数形结合思想”渗透.“数缺形时少直观,形缺数时难入微”.当你所研究的问题较为抽象时,当你的思维陷入困境时,当你对杂乱无章的条件感到头绪混乱时,一个很好的建议:画个图像!利用图形的直观性,可迅速地破解问题,乃至最终解决问题.

3.强化“分类讨论思想”应用.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法.进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”.

4.掌握“函数与方程思想”.函数与方程思想是最重要,最基本的数学思想方法之一,它在整个高中数学中的地位与作用很高.函数的思想包括运用函数的概念和性质去分析问题,转化问题和解决问题.

第1课 函数的概念

【考点导读】

1.在体会函数是描述变量之间的依赖关系的重要数学模型的基础上,通过集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.

2.准确理解函数的概念,能根据函数的三要素判断两个函数是否为同一函数.

【基础练习】

1.设有函数组:① , ;② , ;③ , ;④ , ;⑤ , .其中表示同一个函数的有___②④⑤___.

2.设集合 , ,从 到 有四种对应如图所示:

其中能表示为 到 的函数关系的有_____②③____.

3.写出下列函数定义域:

(1) 的定义域为______________; (2) 的定义域为______________;

(3) 的定义域为______________; (4) 的定义域为_________________.

4.已知三个函数:(1) ; (2) ; (3) .写出使各函数式有意义时, , 的约束条件:

(1)______________________; (2)______________________; (3)______________________________.

5.写出下列函数值域:

(1) , ;值域是 .

(2) ; 值域是 .

(3) , . 值域是 .

【范例解析】

例1.设有函数组:① , ;② , ;

③ , ;④ , .其中表示同一个函数的有③④.

分析:判断两个函数是否为同一函数,关键看函数的三要素是否相同.

解:在①中, 的定义域为 , 的定义域为 ,故不是同一函数;在②中, 的定义域为 , 的定义域为 ,故不是同一函数;③④是同一函数.

点评:两个函数当它们的三要素完全相同时,才能表示同一函数.而当一个函数定义域和对应法则确定时,它的值域也就确定,故判断两个函数是否为同一函数,只需判断它的定义域和对应法则是否相同即可.

例2.求下列函数的定义域:① ; ② ;

解:(1)① 由题意得: 解得 且 或 且 ,

故定义域为 .

② 由题意得: ,解得 ,故定义域为 .

例3.求下列函数的值域:

(1) , ;

(2) ;

(3) .

分析:运用配方法,逆求法,换元法等方法求函数值域.

(1) 解: , , 函数的值域为 ;

(2) 解法一:由 , ,则 , ,故函数值域为 .

解法二:由 ,则 , , , ,故函数值域为 .

(3)解:令 ,则 , ,

当 时, ,故函数值域为 .

点评:二次函数或二次函数型的函数求值域可用配方法;逆求法利用函数有界性求函数的值域;用换元法求函数的值域应注意新元的取值范围.

【反馈演练】

1.函数f(x)= 的定义域是___________.

2.函数 的定义域为_________________.

3. 函数 的值域为________________.

4. 函数 的值域为_____________.

5.函数 的定义域为_____________________.

6.记函数f(x)= 的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a<1) 的定义域为B.

(1) 求A;

(2) 若B A,求实数a的取值范围.

解:(1)由2- ≥0,得 ≥0,x<-1或x≥1, 即A=(-∞,-1)∪[1,+ ∞) .

(2) 由(x-a-1)(2a-x)>0,得(x-a-1)(x-2a)<0.

∵a<1,∴a+1>2a,∴B=(2a,a+1) .

∵B A, ∴2a≥1或a+1≤-1,即a≥ 或a≤-2,而a<1,

∴ ≤a<1或a≤-2,故当B A时, 实数a的取值范围是(-∞,-2]∪[ ,1).

第2课 函数的表示方法

【考点导读】

1.会根据不同的需要选择恰当的方法(如图像法,列表法,解析法)表示函数.

2.求解析式一般有四种情况:(1)根据某个实际问题须建立一种函数关系式;(2)给出函数特征,利用待定系数法求解析式;(3)换元法求解析式;(4)解方程组法求解析式.

【基础练习】

1.设函数 , ,则 _________; __________.

2.设函数 , ,则 _____3_______; ; .

3.已知函数 是一次函数,且 , ,则 __15___.

4.设f(x)= ,则f[f( )]=_____________.

5.如图所示的图象所表示的函数解析式为__________________________.

【范例解析】

例1.已知二次函数 的最小值等于4,且 ,求 的解析式.

分析:给出函数特征,可用待定系数法求解.

解法一:设 ,则 解得

故所求的解析式为 .

解法二: , 抛物线 有对称轴 .故可设 .

将点 代入解得 .故所求的解析式为 .

解法三:设 ,由 ,知 有两个根0,2,

可设 , ,

将点 代入解得 .故所求的解析式为 .

点评:三种解法均是待定系数法,也是求二次函数解析式常用的三种形式:一般式,顶点式,零点式.

例2.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2km,甲10时出发前往乙家.如图,表示甲从出发到乙家为止经过的路程y(km)与时间x(分)的关系.试写出 的函数解析式.

分析:理解题意,根据图像待定系数法求解析式.

解:当 时,直线方程为 ,当 时,直线方程为 ,

点评:建立函数的解析式是解决实际问题的关键,把题中文字语言描述的数学关系用数学符号语言表达.要注意求出解析式后,一定要写出其定义域.

【反馈演练】

1.若 , ,则 ( D )

A.      B.     C.   D.

2.已知 ,且 ,则m等于________.

3. 已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.求函数g(x)的解析式.

解:设函数 的图象上任意一点 关于原点的对称点为 ,

∵点 在函数 的图象上

第3课 函数的单调性

【考点导读】

1.理解函数单调性,最大(小)值及其几何意义;

2.会运用单调性的定义判断或证明一些函数的增减性.

【基础练习】

1.下列函数中:

① ; ② ; ③ ; ④ .

其中,在区间(0,2)上是递增函数的序号有___②___.

2.函数 的递增区间是___ R ___.

3.函数 的递减区间是__________.

4.已知函数 在定义域R上是单调减函数,且 ,则实数a的取值范围__________.

5.已知下列命题:

①定义在 上的函数 满足 ,则函数 是 上的增函数;

②定义在 上的函数 满足 ,则函数 在 上不是减函数;

③定义在 上的函数 在区间 上是增函数,在区间 上也是增函数,则函数 在 上是增函数;

④定义在 上的函数 在区间 上是增函数,在区间 上也是增函数,则函数 在 上是增函数.

其中正确命题的序号有_____②______.

【范例解析】

例 . 求证:(1)函数 在区间 上是单调递增函数;

(2)函数 在区间 和 上都是单调递增函数.

分析:利用单调性的定义证明函数的单调性,注意符号的确定.

证明:(1)对于区间 内的任意两个值 , ,且 ,

因为

又 ,则 , ,得 ,

故 ,即 ,即 .

所以,函数 在区间 上是单调增函数.

(2)对于区间 内的任意两个值 , ,且 ,

因为 ,

又 ,则 , , 得,

故 ,即 ,即 .

所以,函数 在区间 上是单调增函数.

同理,对于区间 ,函数 是单调增函数;

所以,函数 在区间 和 上都是单调增函数.

点评:利用单调性定义证明函数的单调性,一般分三步骤:(1)在给定区间内任意取两值 , ;(2)作差 ,化成因式的乘积并判断符号;(3)给出结论.

例2.确定函数 的单调性.

分析:作差后,符号的确定是关键.

解:由 ,得定义域为 .对于区间 内的任意两个值 , ,且 ,

又 , ,

,即 .

所以, 在区间 上是增函数.

点评:运用有理化可以对含根号的式子进行符号的确定.

【反馈演练】

1.已知函数 ,则该函数在 上单调递__减__,(填“增”“减”)值域为_________.

2.已知函数 在 上是减函数,在 上是增函数,则 __25___.

3. 函数 的单调递增区间为 .

4. 函数 的单调递减区间为 .

5. 已知函数 在区间 上是增函数,求实数a的取值范围.

解:设对于区间 内的任意两个值 , ,且 ,

则 ,

, , 得, , ,即 .

第4课 函数的奇偶性

【考点导读】

1.了解函数奇偶性的含义,能利用定义判断一些简单函数的奇偶性;

2.定义域对奇偶性的影响:定义域关于原点对称是函数为奇函数或偶函数的必要但不充分条件;不具备上述对称性的,既不是奇函数,也不是偶函数.

【基础练习】

1.给出4个函数:① ;② ;③ ;④ .

其中奇函数的有___①④___;偶函数的有____②____;既不是奇函数也不是偶函数的有____③____.

2. 设函数 为奇函数,则实数 -1 .

3.下列函数中,在其定义域内既是奇函数又是减函数的是( A )

A. B. C. D.

【范例解析】

例1.判断下列函数的奇偶性:

(1) ; (2) ;

(3) ; (4) ;

(5) ; (6)

分析:判断函数的奇偶性,先看定义域是否关于原点对称,再利用定义判断.

解:(1)定义域为 ,关于原点对称; ,

所以 为偶函数.

(2)定义域为 ,关于原点对称; ,

,故 为奇函数.

(3)定义域为 ,关于原点对称; , 且 ,

所以 既为奇函数又为偶函数.

(4)定义域为 ,不关于原点对称;故 既不是奇函数也不是偶函数.

(5)定义域为 ,关于原点对称; , ,则 且 ,故 既不是奇函数也不是偶函数.

(6)定义域为 ,关于原点对称;

, 又 ,

,故 为奇函数.

点评:判断函数的奇偶性,应首先注意其定义域是否关于原点对称;其次,利用定义即 或 判断,注意定义的等价形式 或 .

例2. 已知定义在 上的函数 是奇函数,且当 时, ,求函数 的解析式,并指出它的单调区间.

分析:奇函数若在原点有定义,则 .

解:设 ,则 , .

又 是奇函数, , .

当 时, .

综上, 的解析式为 .

作出 的图像,可得增区间为 , ,减区间为 , .

点评:(1)求解析式时 的情况不能漏;(2)两个单调区间之间一般不用“ ”连接;(3)利用奇偶性求解析式一般是通过“ ”实现转化;(4)根据图像写单调区间.

【反馈演练】

1.已知定义域为R的函数 在区间 上为减函数,且函数 为偶函数,则( D )

A. B. C. D.

2. 在 上定义的函数 是偶函数,且 ,若 在区间 是减函数,则函数 ( B )

A.在区间 上是增函数,区间 上是增函数

B.在区间 上是增函数,区间 上是减函数

C.在区间 上是减函数,区间 上是增函数

D.在区间 上是减函数,区间 上是减函数

3. 设 ,则使函数 的定义域为R且为奇函数的所有 的值为____1,3 ___.

4.设函数 为奇函数, 则 ________.

5.若函数 是定义在R上的偶函数,在 上是减函数,且 ,则使得 的x的取

值范围是(-2,2).

6. 已知函数 是奇函数.又 , ,求a,b,c的值;

解:由 ,得 ,得 .又 ,得 ,

而 ,得 ,解得 .又 , 或1.

若 ,则 ,应舍去;若 ,则 .

所以, .

综上,可知 的值域为 .

第5 课 函数的图像

【考点导读】

1.掌握基本初等函数的图像特征,学会运用函数的图像理解和研究函数的性质;

2.掌握画图像的基本方法:描点法和图像变换法.

【基础练习】

1.根据下列各函数式的变换,在箭头上填写对应函数图像的变换:

(1) ;

(2) .

2.作出下列各个函数图像的示意图:

(1) ; (2) ; (3) .

解:(1)将 的图像向下平移1个单位,可得 的图像.图略;

(2)将 的图像向右平移2个单位,可得 的图像.图略;

(3)由 ,将 的图像先向右平移1个单位,得 的图像,再向下平移1个单位,可得 的图像.如下图所示:

3.作出下列各个函数图像的示意图:

(1) ; (2) ; (3) ; (4) .

解:(1)作 的图像关于y轴的对称图像,如图1所示;

(2)作 的图像关于x轴的对称图像,如图2所示;

(3)作 的图像及它关于y轴的对称图像,如图3所示;

(4)作 的图像,并将x轴下方的部分翻折到x轴上方,如图4所示.

4. 函数 的图象是 ( B )

【范例解析】

例1.作出函数 及 , , , , 的图像.

分析:根据图像变换得到相应函数的图像.

解: 与 的图像关于y轴对称;

与 的图像关于x轴对称;

将 的图像向左平移2个单位得到 的图像;

保留 的图像在x轴上方的部分,将x轴下方的部分关于x轴翻折上去,并去掉原下方的部分;

将 的图像在y轴右边的部分沿y轴翻折到y轴的左边部分替代原y轴左边部分,并保留 在y轴右边部分.图略.

点评:图像变换的类型主要有平移变换,对称变换两种.平移变换:左“+”右“-”,上“+”下“-”;对称变换: 与 的图像关于y轴对称;

与 的图像关于x轴对称; 与 的图像关于原点对称;

保留 的图像在x轴上方的部分,将x轴下方的部分关于x轴翻折上去,并去掉原下方的部分;

将 的图像在y轴右边的部分沿y轴翻折到y轴的左边部分替代原y轴左边部分,并保留 在y轴右边部分.

例2.设函数 .

(1)在区间 上画出函数 的图像;

(2)设集合 . 试判断集合 和 之间的关系,并给出证明.

分析:根据图像变换得到 的图像,第(3)问实质是恒成立问题.

解:(1)

(2)方程 的解分别是 和 ,由于 在 和 上单调递减,在 和 上单调递增,因此 .

由于 .

【反馈演练】

1.函数 的图象是( B )

2. 为了得到函数 的图象,可以把函数 的图象向右平移1个单位长度得到.

3.已知函数 的图象有公共点A,且点A的横坐标为2,则 = .

4.设f(x)是定义在R上的奇函数,且y=f (x)的图象关于直线 对称,则

f (1)+ f (2)+ f (3)+ f (4)+ f (5)=_____0____ .

5. 作出下列函数的简图:

(1) ; (2) ; (3) .

第6课 二次函数

【考点导读】

1.理解二次函数的概念,掌握二次函数的图像和性质;

2.能结合二次函数的图像判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系.

【基础练习】

1. 已知二次函数 ,则其图像的开口向__上__;对称轴方程为 ;顶点坐标为 ,与 轴的交点坐标为 ,最小值为 .

2. 二次函数 的图像的对称轴为 ,则 __-2___,顶点坐标为 ,递增区间为 ,递减区间为 .

3. 函数 的零点为 .

4. 实系数方程 两实根异号的充要条件为 ;有两正根的充要条件为 ;有两负根的充要条件为 .

5. 已知函数 在区间 上有最大值3,最小值2,则m的取值范围是__________.

【范例解析】

例1.设 为实数,函数 , .

(1)讨论 的奇偶性;

(2)若 时,求 的最小值.

分析:去绝对值.

解:(1)当 时,函数

此时, 为偶函数.

当 时, , ,

, .

此时 既不是奇函数,也不是偶函数.

(2)

由于 在 上的最小值为 ,在 内的最小值为 .

故函数 在 内的最小值为 .

点评:注意分类讨论;分段函数求最值,先求每个区间上的函数最值,再确定最值中的最值.

例2.函数 在区间 的最大值记为 ,求 的表达式.

分析:二次函数在给定区间上求最值,重点研究其在所给区间上的单调性情况.

解:∵直线 是抛物线 的对称轴,∴可分以下几种情况进行讨论:

(1)当 时,函数 , 的图象是开口向上的抛物线的一段,

由 知 在 上单调递增,故 ;

(2)当 时, , ,有 =2;

(3)当 时,,函数 , 的图象是开口向下的抛物线的一段,

若 即 时, ,

若 即 时, ,

若 即 时, .

综上所述,有 = .

点评:解答本题应注意两点:一是对 时不能遗漏;二是对 时的分类讨论中应同时考察抛物线的开口方向,对称轴的位置及 在区间 上的单调性.

【反馈演练】

1.函数 是单调函数的充要条件是 .

2.已知二次函数的图像顶点为 ,且图像在 轴上截得的线段长为8,则此二次函数的解析式为 .

3. 设 ,二次函数 的图象为下列四图之一:

则a的值为 ( B )

A.1 B.-1 C. D.

4.若不等式 对于一切 成立,则a的取值范围是 .

5.若关于x的方程 在 有解,则实数m的取值范围是 .

6.已知函数 在 有最小值,记作 .

(1)求 的表达式;

(2)求 的最大值.

解:(1)由 知对称轴方程为 ,

当 时,即 时, ;

当 ,即 时, ;

当 ,即 时, ;

综上, .

(2)当 时, ;当 时, ;当 时, .故当 时, 的最大值为3.

7. 分别根据下列条件,求实数a的值:

(1)函数 在在 上有最大值2;

(2)函数 在在 上有最大值4.

解:(1)当 时, ,令 ,则 ;

当 时, ,令 , (舍);

当 时, ,即 .

综上,可得 或 .

(2)当 时, ,即 ,则 ;

当 时, ,即 ,则 .

综上, 或 .

8. 已知函数 .

(1)对任意 ,比较 与 的大小;

(2)若 时,有 ,求实数a的取值范围.

解:(1)对任意 , ,

故 .

(2)又 ,得 ,即 ,

(1)设椭圆C上的点 到 两点距离之和等于4,写出椭圆C的方程和焦点坐标

(2)设K是(1)中所得椭圆上的动点,求线段 的中点B的轨迹方程

(3)设点P是椭圆C 上的任意一点,过原点的直线L与椭圆相交于M,N两点,当直线PM ,PN的斜率都存在,并记为 试探究 的值是否与点P及直线L有关,并证明你的结论。

25.已知椭圆 的离心率为 ,直线 : 与以原点为圆心、以椭圆 的短半轴长为半径的圆相切.

(I)求椭圆 的方程;

(II)设椭圆 的左焦点为 ,右焦点 ,直线 过点 且垂直于椭圆的长轴,动直线 垂直 于点 ,线段 垂直平分线交 于点 ,求点 的轨迹 的方程;

(III)设 与 轴交于点 ,不同的两点 在 上,且满足 求 的取值范围.

26.如图所示,已知椭圆 : , 、 为

其左、右焦点, 为右顶点, 为左准线,过 的直线 : 与椭圆相交于 、

两点,且有: ( 为椭圆的半焦距)

(1)求椭圆 的离心率 的最小值;

(2)若 ,求实数 的取值范围;

(3)若 , ,

求证: 、 两点的纵坐标之积为定值;

27.已知椭圆 的左焦点为 ,左右顶点分别为 ,上顶点为 ,过 三点作圆 ,其中圆心 的坐标为

(1)当 > 时,椭圆的离心率的取值范围

(2)直线 能否和圆 相切?证明你的结论

28.已知点A(-1,0),B(1,-1)和抛物线. ,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.

(I)证明: 为定值;

(II)若△POM的面积为 ,求向量 与 的夹角;

(Ⅲ) 证明直线PQ恒过一个定点.

29.已知椭圆C: 上动点 到定点 ,其中 的距离 的最小值为1.

(1)请确定M点的坐标

(2)试问是否存在经过M点的直线 ,使 与椭圆C的两个交点A、B满足条件 (O为原点),若存在,求出 的方程,若不存在请说是理由。

30.已知椭圆 ,直线 与椭圆相交于 两点.

(Ⅰ)若线段 中点的横坐标是 ,求直线 的方程;

(Ⅱ)在 轴上是否存在点 ,使 的值与 无关?若存在,求出 的值;若不存在,请说明理由.

31.直线AB过抛物线 的焦点F,并与其相交于A、B两点。Q是线段AB的中点,M是抛物线的准线与y轴的交点.O是坐标原点.

(I)求 的取值范围;

(Ⅱ)过 A、B两点分剐作此撒物线的切线,两切线相交于N点.求证: ∥ ;

(Ⅲ) 若P是不为1的正整数,当 ,△ABN的面积的取值范围为 时,求该抛物线的方程.

32.如图,设抛物线 ( )的准线与 轴交于 ,焦点为 ;以 、 为焦点,离心率 的椭圆 与抛物线 在 轴上方的一个交点为 .

(Ⅰ)当 时,求椭圆的方程及其右准线的方程;

(Ⅱ)在(Ⅰ)的条件下,直线 经过椭圆 的右焦点 ,与抛物线 交于 、 ,如果以线段 为直径作圆,试判断点 与圆的位置关系,并说明理由;

(Ⅲ)是否存在实数 ,使得 的边长是连续的自然数,若存在,求出这样的实数 ;若不存在,请说明理由.

33.已知点 和动点 满足: ,且存在正常数 ,使得 。

(1)求动点P的轨迹C的方程。

(2)设直线 与曲线C相交于两点E,F,且与y轴的交点为D。若 求 的值。

34.已知椭圆 的右准线 与 轴相交于点 ,右焦点 到上顶点的距离为 ,点 是线段 上的一个动点.

(I)求椭圆的方程;

(Ⅱ)是否存在过点 且与 轴不垂直的直线 与椭圆交于 、 两点,使得 ,并说明理由.

35.已知椭圆C: ( .

(1)若椭圆的长轴长为4,离心率为 ,求椭圆的标准方程;

(2)在(1)的条件下,设过定点 的直线 与椭圆C交于不同的两点 ,且 为锐角(其中 为坐标原点),求直线 的斜率k的取值范围;

(3)如图,过原点 任意作两条互相垂直的直线与椭圆 ( )相交于 四点,设原点 到四边形 一边的距离为 ,试求 时 满足的条件.

36.已知 若过定点 、以 ( )为法向量的直线 与过点 以 为法向量的直线 相交于动点 .

(1)求直线 和 的方程;

(2)求直线 和 的斜率之积 的值,并证明必存在两个定点 使得 恒为定值;

(3)在(2)的条件下,若 是 上的两个动点,且 ,试问当 取最小值时,向量 与 是否平行,并说明理由。

37.已知点 ,点 (其中 ),直线 、 都是圆 的切线.

(Ⅰ)若 面积等于6,求过点 的抛物线 的方程;

(Ⅱ)若点 在 轴右边,求 面积的最小值.

38.我们知道,判断直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学们进行研究并完成下面问题。

(1)设F1、F2是椭圆 的两个焦点,点F1、F2到直线 的距离分别为d1、d2,试求d1•d2的值,并判断直线L与椭圆M的位置关系。

(2)设F1、F2是椭圆 的两个焦点,点F1、F2到直线

(m、n不同时为0)的距离分别为d1、d2,且直线L与椭圆M相切,试求d1•d2的值。

(3)试写出一个能判断直线与椭圆的位置关系的充要条件,并证明。

(4)将(3)中得出的结论类比到其它曲线,请同学们给出自己研究的有关结论(不必证明)。

39.已知点 为抛物线 的焦点,点 是准线 上的动点,直线 交抛物线 于 两点,若点 的纵坐标为 ,点 为准线 与 轴的交点.

(Ⅰ)求直线 的方程;(Ⅱ)求 的面积 范围;

(Ⅲ)设 , ,求证 为定值.

40.已知椭圆 的离心率为 ,直线 : 与以原点为圆心、以椭圆 的短半轴长为半径的圆相切.

(I)求椭圆 的方程;

(II)设椭圆 的左焦点为 ,右焦点 ,直线 过点 且垂直于椭圆的长轴,动直线 垂直 于点 ,线段 垂直平分线交 于点 ,求点 的轨迹 的方程;

(III)设 与 轴交于点 ,不同的两点 在 上,且满足 求 的取值范围.

41.已知以向量 为方向向量的直线 过点 ,抛物线 : 的顶点关于直线 的对称点在该抛物线的准线上.

(1)求抛物线 的方程;

(2)设 、 是抛物线 上的两个动点,过 作平行于 轴的直线 ,直线 与直线 交于点 ,若 ( 为坐标原点, 、 异于点 ),试求点 的轨迹方程。

42.如图,设抛物线 ( )的准线与 轴交于 ,焦点为 ;以 、 为焦点,离心率 的椭圆 与抛物线 在 轴上方的一个交点为 .

(Ⅰ)当 时,求椭圆的方程及其右准线的方程;

(Ⅱ)在(Ⅰ)的条件下,直线 经过椭圆 的右焦点 ,

与抛物线 交于 、 ,如果以线段 为直径作圆,

试判断点 与圆的位置关系,并说明理由;

(Ⅲ)是否存在实数 ,使得 的边长是连续的自然数,若存在,求出这样的实数 ;若不存在,请说明理由.

43.设椭圆 的一个顶点与抛物线 的焦点重合, 分别是椭圆的左、右焦点,且离心率 且过椭圆右焦点 的直线 与椭圆C交于 两点.

(Ⅰ)求椭圆C的方程;

(Ⅱ)是否存在直线 ,使得 .若存在,求出直线 的方程;若不存在,说明理由.

(Ⅲ)若AB是椭圆C经过原点O的弦, MN AB,求证: 为定值.

44.设 是抛物线 的焦点,过点M(-1,0)且以 为方向向量的直线顺次交抛物线于 两点。

(Ⅰ)当 时,若 与 的夹角为 ,求抛物线的方程;

(Ⅱ)若点 满足 ,证明 为定值,并求此时△ 的面积

45.已知点 ,点 在 轴上,点 在 轴的正半轴上,点 在直线 上,且满足 .

(Ⅰ)当点 在 轴上移动时,求点 的轨迹 的方程;

(Ⅱ)设 、 为轨迹 上两点,且 >1, >0, ,求实数 ,

使 ,且 .

46.已知椭圆 的右焦点为F,上顶点为A,P为C 上任一点,MN是圆 的一条直径,若与AF平行且在y轴上的截距为 的直线 恰好与圆 相切。

(1)已知椭圆 的离心率;

(2)若 的最大值为49,求椭圆C 的方程.

【总结】2013年常梦网为小编在此为您收集了此文章“高三数学复习教案:高考数学圆锥曲线复习教案”,今后还会发布更多更好的文章希望对大家有所帮助,祝您在常梦网学习愉快!

欢迎来到常梦网高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。因此小编在此为您编辑了此文:“高三数学教案:高考数学抛物线复习教案”希望能为您的提供到帮助。

本文题目:高三数学教案:高考数学抛物线复习教案

1 抛物线的定义:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.

2 抛物线的图形和性质:

①顶点是焦点向准线所作垂线段中点。

②焦准距:

③通径:过焦点垂直于轴的弦长为 。

④顶点平分焦点到准线的垂线段: 。

⑤焦半径为半径的圆:以P为圆心、FP为半径的圆必与准线相切。所有这样的圆过定点F、准线是公切线。

⑥焦半径为直径的圆:以焦半径 FP为直径的圆必与过顶点垂直于轴的直线相切。所有这样的圆过定点F、过顶点垂直于轴的直线是公切线。

⑦焦点弦为直径的圆:以焦点弦PQ为直径的圆必与准线相切。所有这样的圆的公切线是准线。

3 抛物线标准方程的四种形式:

4 抛物线 的图像和性质:

①焦点坐标是: ,

②准线方程是: 。

③焦半径公式:若点 是抛物线 上一点,则该点到抛物线的焦点的距离(称为焦半径)是: ,

④焦点弦长公式:过焦点弦长

⑤抛物线 上的动点可设为P 或 或P

5 一般情况归纳:

方程 图象 焦点 准线 定义特征

y2=kx k>0时开口向右 (k/4,0) x= ─k/4 到焦点(k/4,0)的距离等于到准线x= ─k/4的距离

k<0时开口向左

x2=ky k>0时开口向上 (0,k/4) y= ─k/4 到焦点(0,k/4)的距离等于到准线y= ─k/4的距离

k<0时开口向下

抛物线的定义:

例1:点M与点F (-4,0)的距离比它到直线l:x-6=0的距离4.2,求点M的轨迹方程.

分析:点M到点F的距离与到直线x=4的距离恰好相等,符合抛物线定义.

答案:y2=-16x

例2:斜率为1的直线l经过抛物线y2=4x的焦点,与抛物线相交于点A、B,求线段A、B的长.

分析:这是灵活运用抛物线定义的题目.基本思路是:把求弦长AB转化为求A、B两点到准线距离的和.

解:如图8-3-1,y2=4x的焦点为F (1,0),则l的方程为y=x-1.

由 消去y得x2-6x+1=0.

设A (x1,y1),B (x2,y2) 则x1+x2=6.

又A、B两点到准线的距离为 , ,则

点评:抛物线的定义本身也是抛物线最本质的性质,在解题中起到至关重要的作用。

例3:(1) 已知抛物线的标准方程是y2=10x,求它的焦点坐标和准线方程;

(2) 已知抛物线的焦点是F (0,3)求它的标准方程;

(3) 已知抛物线方程为y=-mx2 (m>0)求它的焦点坐标和准线方程;

(4) 求经过P (-4,-2)点的抛物线的标准方程;

分析:这是为掌握抛物线四类标准方程而设计的基础题,解题时首先分清属哪类标准型,再录求P值(注意p>0).特别是(3)题,要先化为标准形式: ,则 .(4)题满足条件的抛物线有向左和向下开口的两条,因此有两解.

答案:(1) , .(2) x2=12y (3) , ;(4) y2=-x或x2=-8y.

例4 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:

(1)过点(-3,2);

(2)焦点在直线x-2y-4=0上

分析:从方程形式看,求抛物线的标准方程仅需确定一个待定系数p;从实际分析,一般需确定p和确定开口方向两个条件,否则,应展开相应的讨论

解:(1)设所求的抛物线方程为y2=-2px或x2=2py(p>0),

∵过点(-3,2),

∴4=-2p(-3)或9=2p•2

∴p= 或p=

∴所求的抛物线方程为y2=- x或x2= y,前者的准线方程是x= ,后者的准线方程是y=-

(2)令x=0得y=-2,令y=0得x=4,

∴抛物线的焦点为(4,0)或(0,-2)

当焦点为(4,0)时, =4,

∴p=8,此时抛物线方程y2=16x;

焦点为(0,-2)时, =2,

∴p=4,此时抛物线方程为x2=-8y

∴所求的抛物线的方程为y2=16x或x2=-8y,

对应的准线方程分别是x=-4,y=2

常用结论

① 过抛物线y2=2px的焦点F的弦AB长的最小值为2p

② 设A(x1,y), 1B(x2,y2)是抛物线y2=2px上的两点, 则AB过F的充要条件是y1y2=-p2

③ 设A, B是抛物线y2=2px上的两点,O为原点, 则OA⊥OB的充要条件是直线AB恒过定点(2p,0)

例5:过抛物线y2=2px (p>0)的顶点O作弦OA⊥OB,与抛物线分别交于A(x1,y1),B(x2,y2)两点,求证:y1y2=-4p2.

分析:由OA⊥OB,得到OA、OB斜率之积等于-1,从而得到x1、x2,y1、y2之间的关系.又A、B是抛物线上的点,故(x1,y1)、(x2,y2)满足抛物线方程.从这几个关系式可以得到y1、y2的值.

证:由OA⊥OB,得 ,即y1y2=-x1x2,又 , ,所以: ,即 . 而y1y2≠0.所以y1y2=-4p2.

弦的问题

例1 A,B是抛物线y2=2px(p>0)上的两点,满足OAOB(O为坐标原点) 求证:(1)A,B两点的横坐标之积,纵坐标之积为定值;

(2)直线AB经过一个定点

(3)作OMAB于M,求点M的轨迹方程

解:(1)设A(x1,y1), B(x2,y2), 则y12=2px1, y22=2px2,

∴y12y22=4p2x1x2,

∵OAOB, ∴x1x2+y1y2=0,

由此即可解得:x1x2=4p2, y1y2=─4p2 (定值)

(2)直线AB的斜率k= = = ,

∴直线AB的方程为y─y1= (x─ ),

即y(y1+y2)─y1y2=2px, 由(1)可得 y= (x─2p),

直线AB过定点C(2p,0)

(3)解法1:设M(x,y), 由(2)知y= (x─2p) (i),

又ABOM, 故两直线的斜率之积为─1, 即 • = ─1 (ii)

由(i),(ii)得x2─2px+y2=0 (x0)

解法2: 由OMAB知点M的轨迹是以原点和点(2p,0)为直径的圆(除去原点) 立即可求出

例2 定长为3的线段AB的两个端点在抛物线y2=x上移动,AB的中点为M,求点M到y轴的最短距离,并求此时点M的坐标

解:如图,设A(x1,y1), B(x2,y2),M(x,y), 则x= , y= ,

又设点A,B,M在准线 :x=─1/4上的射影分别为A/,B/,M/, MM/与y轴的交点为N,

则|AF|=|AA/|=x1+ ,|BF|=|BB/|=x2+ ,

∴x= (x1+x2)= (|AF|+|BF|─ ) (|AB|─ )=

等号在直线AB过焦点时成立,此时直线AB的方程为y=k(x─ )

由 得16k2x2─8(k2+2)x+k2=0

依题意|AB|= |x1─x2|= × = =3,

∴k2=1/2, 此时x= (x1+x2)= =

∴y= ± 即M( , ), N( ,─ )

例3 设一动直线过定点A(2, 0)且与抛物线 相交于B、C两点,点B、C在 轴上的射影分别为 , P是线段BC上的点,且适合 ,求 的重心Q的轨迹方程,并说明该轨迹是什么图形

解析: 设 ,

,

由 得

又 代入①式得 ②

由 得 代入②式得:

由 得 或 , 又由①式知 关于 是减函数且

, 且

所以Q点轨迹为一线段(抠去一点):

( 且 )

例4 已知抛物线 ,焦点为F,一直线 与抛物线交于A、B两点,且 ,且AB的垂直平分线恒过定点S(6, 0)

①求抛物线方程; ②求 面积的最大值

解: ①设 , AB中点

由 得

又 得

所以 依题意 ,

抛物线方程为

②由 及 ,

令 得

又由 和 得:

例5 定长为3的线段AB的两个端点在抛物线y2=x上移动,AB的中点为M,求点M到y轴的最短距离,并求此时点M的坐标

解:如图,设A(x1,y1), B(x2,y2),M(x,y), 则x= , y= ,

又设点A,B,M在准线 :x=─1/4上的射影分别为A/,B/,M/, MM/与y轴的交点为N,

则|AF|=|AA/|=x1+ ,|BF|=|BB/|=x2+ ,

∴x= (x1+x2)= (|AF|+|BF|─ ) (|AB|─ )=

等号在直线AB过焦点时成立,此时直线AB的方程为y=k(x─ )

由 得16k2x2─8(k2+2)x+k2=0

依题意|AB|= |x1─x2|= × = =3,

∴k2=1/2, 此时x= (x1+x2)= =

∴y= ± 即M( , ), N( ,─ )

综合类(几何)

例1 过抛物线焦点的一条直线与它交于两点P、Q,通过点P和抛物线顶点的直线交准线于点M,如何证明直线MQ平行于抛物线的对称轴?

解:思路一:求出M、Q的纵坐标并进行比较,如果相等,则MQ//x轴,为此,将方程 联立,解出

直线OP的方程为 即

令 ,得M点纵坐标 得证.

由此可见,按这一思路去证,运算较为繁琐.

思路二:利用命题“如果过抛物线 的焦点的一条直线和这条抛物线相交,两上交点的纵坐标为 、 ,那么 ”来证.

设 、 、 ,并从 及 中消去x,得到 ,则有结论 ,即 .

又直线OP的方程为 , ,得 .

因为 在抛物线上,所以 .

从而 .

这一证法运算较小.

思路三:直线MQ的方程为 的充要条件是 .

将直线MO的方程 和直线QF的方程 联立,它的解(x ,y)就是点P的坐标,消去 的充要条件是点P在抛物线上,得证.这一证法巧用了充要条件来进行逆向思维,运算量也较小.

说明:本题中过抛物线焦点的直线与x轴垂直时(即斜率不存在),容易证明成立.

例2 已知过抛物线 的焦点且斜率为1的直线交抛物线于A、B两点,点R是含抛物线顶点O的弧AB上一点,求△RAB的最大面积.

分析:求RAB的最大面积,因过焦点且斜率为1的弦长为定值,故可以 为三角形的底,只要确定高的最大值即可.

解:设AB所在的直线方程为 .

将其代入抛物线方程 ,消去x得

当过R的直线l平行于AB且与抛物线相切时,△RAB的面积有最大值.

设直线l方程为 .代入抛物线方程得

由 得 ,这时 .它到AB的距离为

∴△RAB的最大面积为 .

例3 直线 过点 ,与抛物线 交于 、 两点,P是线段 的中点,直线 过P和抛物线的焦点F,设直线 的斜率为k.

(1)将直线 的斜率与直线 的斜率之比表示为k的函数 ;

(2)求出 的定义域及单调区间.

分析: 过点P及F,利用两点的斜率公式,可将 的斜率用k表示出来,从而写出 ,由函数 的特点求得其定义域及单调区间.

解:(1)设 的方程为: ,将它代入方程 ,得

设 ,则

将 代入 得: ,即P点坐标为 .

由 ,知焦点 ,∴直线 的斜率

∴函数 .

(2)∵ 与抛物线有两上交点,∴ 且

解得 或

∴函数 的定义域为

当 时, 为增函数.

例4 如图所示:直线l过抛物线 的焦点,并且与这抛物线相交于A、B两点,求证:对于这抛物线的任何给定的一条弦CD,直线l不是CD的垂直平分线.

分析:本题所要证的命题结论是否定形式,一方面可根据垂直且平分列方程得矛盾结论;别一方面也可以根据l上任一点到C、D距离相等来得矛盾结论.

证法一:假设直线l是抛物线的弦CD的垂直平方线,因为直线l与抛物线交于A、B两点,所以直线l的斜率存在,且不为零;直线CD的斜率存在,且不为0.

设C、D的坐标分别为 与 .则

∴l的方程为

∵直线l平分弦CD

∴CD的中点 在直线l上,

即 ,化简得:

由 知 得到矛盾,所以直线l不可能是抛物线的弦CD的垂直平分线.

证法二:假设直线l是弦CD的垂直平分线

∵焦点F在直线l上,∴

由抛物线定义, 到抛物线的准线 的距离相等.

∵ ,

∴CD的垂直平分线l: 与直线l和抛物线有两上交点矛盾,下略.

例5 设过抛物线 的顶点O的两弦OA、OB互相垂直,求抛物线顶点O在AB上射影N的轨迹方程.

分析:求与抛物线有关的轨迹方程,可先把N看成定点 ;待求得 的关系后再用动点坐标 来表示,也可结合几何知识,通过巧妙替换,简化运算.

解法一:设

则: ,

, 即

, ①

把N点看作定点,则AB所在的直线方程为: 显然

代入 化简整理得:

, ②

由①、②得: ,化简得

用x、y分别表示 得:

解法二:点N在以OA、OB为直径的两圆的交点(非原点)的轨迹上,设 ,则以OA为直径的圆方程为:

设 ,OA⊥OB,则

在求以OB为直径的圆方程时以 代 ,可得

由①+②得:

例6如图所示,直线 和 相交于点M, ⊥ ,点 ,以A、B为端点的曲线段C上的任一点到 的距离与到点N的距离相等,若△AMN为锐角三角形, , ,且 ,建立适当的坐标系,求曲线段C的方程.

分析:因为曲线段C上的任一点是以点N为焦点,以 为准线的抛物线的一段,所以本题关键是建立适当坐标系,确定C所满足的抛物线方程.

解:以 为x轴,MN的中点为坐标原点O,建立直角坐标系.

由题意,曲线段C是N为焦点,以 为准线的抛物线的一段,其中A、B分别为曲线段的两端点.

∴设曲线段C满足的抛物线方程为: 其中 、 为A、B的横坐标

令 则 ,

∴由两点间的距离公式,得方程组:

解得 或

热点阅读

网友最爱